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Abstract
Given query access to an undirected graph G, we consider
the problem of computing a (1 ± ε)-approximation of the
number of k-cliques in G. The standard query model for
general graphs allows for degree queries, neighbor queries,
and pair queries. Let n be the number of vertices, m be
the number of edges, and nk be the number of k-cliques.
Previous work by Eden, Ron and Seshadhri (STOC 2018)

gives an O∗( n

n
1/k
k

+ mk/2

nk
)-time algorithm for this problem

(we use O∗(·) to suppress poly(log n, 1/ε, kk) dependencies).
Moreover, this bound is nearly optimal when the expression
is sublinear in the size of the graph.

Our motivation is to circumvent this lower bound, by
parameterizing the complexity in terms of graph arboricity.
The arboricity of G is a measure for the graph density
“everywhere”. There is a very rich family of graphs with
bounded arboricity, including all minor-closed graph classes
(such as planar graphs and graphs with bounded treewidth),
bounded degree graphs, preferential attachment graphs and
more.

We design an algorithm for the class of graphs
with arboricity at most α, whose running time is

O∗(min{nαk−1

nk
, n

n
1/k
k

+ mαk−2

nk
}). We also prove a nearly

matching lower bound. For all graphs, the arboricity is
O(

√
m), so this bound subsumes all previous results on sub-

linear clique approximation.
As a special case of interest, consider minor-closed

families of graphs, which have constant arboricity. Our
result implies that for any minor-closed family of graphs,
there is a (1 ± ε)-approximation algorithm for nk that has
running time O∗( n

nk
). Such a bound was not known even

for the special (classic) case of triangle counting in planar
graphs.

1 Introduction

The problem of counting the number of k-cliques in a
graph is a fundamental problem in theoretical computer
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science [10, 49, 40, 58, 7], with a wide variety of applica-
tions [37, 13, 53, 18, 44, 8, 6, 31, 54, 38, 27, 57, 30, 39].
This problem has seen a resurgence of interest because
of its importance in analyzing massive real-world graphs
(like social networks and biological networks). There
are a number of clever algorithms for exactly counting
k-cliques using matrix multiplications [49, 26] or combi-
natorial methods [58]. However, the complexity of these
algorithms grows with mΘ(k), where m is the number of
edges in the graph.

A line of recent work has considered this question
from a sublinear approximation perspective [20, 24].
Letting n denote the number of vertices, m the number
of edges, and nk the number of k-cliques, the complexity
of approximating the number of k-cliques up to a (1±ε)-

multiplicative factor is O∗
(

n

n
1/k
k

+ mk/2

nk

)
with a nearly

matching lower bound [24].1

We study the problem of approximating the number
of k-cliques in bounded arboricity graphs, with the hope
of circumventing the above lower bound.2 A graph of
arboricity at most α has the property that the average
degree in any subgraph is at most 2α [46, 47]. One of our
motivations is to understand when it is possible to get
a running time of O∗(n/nk). This is an obvious lower
bound, since a graph can simply contain nk disjoint k-
cliques, and, e.g., a cycle on the remaining vertices. It
requires Ω(n/nk) uniform vertex samples just to land
in a k-clique. Are there classes of graphs for which one
can accurately estimate the number of k-cliques in this
time?

A consequence of our main theorem is an affirma-
tive answer to this question, for the class of constant-
arboricity graphs. The class of graphs with constant ar-
boricity is an immensely rich class, containing, among
others, all minor-closed graph families. The concept
of constant arboricity plays a significant role in the the-
ory of bounded expansion graphs, which has applications

1As stated in the abstract, we use the O∗(·) notation to

suppress poly(logn, 1/ε, kk) dependencies.
2The arboricity of a graph is the minimal number of forests

required to cover the edges of the graph.
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in logic, descriptive complexity, and fixed parameter
tractability [48]. In the context of real-world graphs, the
classic Barabási-Albert preferential attachment graphs
as well as additional models generate constant arboric-
ity graphs [3, 5, 4]. In most real-world graphs, the ar-
boricity is at most an order of magnitude larger than
the average degree, while the maximum degree is three
to four orders of magnitude larger [32, 39, 55]. In prac-
tical applications, low arboricity is often exploited for
faster algorithms for clique and dense subgraph count-
ing [28, 30, 45, 39, 16].

A classic result of Chiba and Nishizeki gives an
O(n+mαk−2) algorithm for exact counting of k-cliques
in graphs of arboricity at most α [10]. Our primary
motivation is to get a sublinear-time algorithm for
approximating the number of k-cliques on such graphs.
We assume the standard query model for general graphs
(refer to Chapter 10 of Goldreich’s book [33]), so that
the algorithm can perform degree, neighbor and pair
queries. Let us exactly specify each query. (1) Degree
queries: given v ∈ V , get the degree d(v). (2) Neighbor
queries: given v ∈ V and i ≤ d(v) get the ith neighbor
of v. (3) Pair queries: given vertices u, v, determine if
(u, v) is an edge.3

1.1 Results. Our main result is an algorithm for ap-
proximating the number of k-cliques, whose complexity
depends on the arboricity. The algorithm is sublinear
for nk = ω(αk−2) (and we subsequently show that for
smaller nk, sublinear complexity cannot be obtained).

Theorem 1.1. There exists an algorithm that, given
n, k, an approximation parameter 0 < ε < 1, query
access to a graph G, and an upper bound α on the
arboricity of G, outputs an estimate n̂k, such that with
high constant probability (over the randomness of the
algorithm),

(1− ε) · nk ≤ n̂k ≤ (1 + ε) · nk.

The expected running time of the algorithm is

min

{
nαk−1

nk
,

n

n
1/k
k

+
mαk−2

nk

}
· poly(log n, 1/ε, kk),

and the expected query complexity is the minimum
between the expected running time and O(m+ n).

3Gonen et al. [35] proved that any algorithm for approximating

the number of triangles when given access only to degree and
neighbor queries, requires Ω(n) queries when m = Θ(n). We note

that their lower bound is based on constructing two families of

graphs, where both families have constant arboricity. Therefore,

their lower bound holds for bounded arboricity graphs.

Recall that α is always upper bounded by
√
m, so

that the bound in Theorem 1.1 subsumes the result for
for approximating the number of k-cliques in general
graphs [24]. As we discuss in more detail in Section 2,
our algorithm starts similarly to the algorithm of [24]
but departs quickly since it relies on a different, itera-
tive, approach so as to achieve the dependence on α.

Comparing our bound of O∗
(

n

n
1/k
k

+ mαk−2

nk

)
for

approximate counting with the Chiba and Nishizeki
bound of O(n + mαk−2) for exact counting, we get

that when nk ≫ poly
(

logn·kk

ε

)
, our bound is smaller,

and as nk increases the gap becomes more significant.
Note that Chiba and Nishizeki read the entire graph,
so that they have full knowledge of the graph, and
their challenge is to count the number of k-cliques (by
enumerating them), as efficiently (in terms of running
time) as possible. On the other hand, our algorithm
may obtain only a partial view of the graph. Hence, our
challenge is to compute an estimate of the number of k-
cliques based on such partial knowledge, by devising a
careful sampling procedure (that in particular, exploits
the bounded arboricity).

An application of Theorem 1.1 for the family G of
minor-closed graphs4 gives the following corollary. We
note that even for the special case of triangle counting in
planar graphs, such a result was not previously known.

Corollary 1.2. Let G be a minor-closed family of
graphs. There is an algorithm that, given n, k, ε, and
query access to G ∈ G, outputs a (1± ε)-approximation
of nk with high constant probability. The expected
running time of the algorithm is

(n/nk) · poly(log n, 1/ε, kk).

In general, we prove that the bound of Theorem 1.1
is nearly optimal.

Theorem 1.3. Consider the set G of graphs of ar-
boricity at most α. Any multiplicative approximation
algorithm that succeeds with constant probability on all
graphs in G must make

Ω

(
min

{
nαk−1

kk·nk
, n

k·n1/k
k

}
+min

{
m(α/k)k−2

nk
, m

})

queries in expectation.

1.2 Related Work. Clique counting, and the spe-
cial case of triangle counting, have received significant
attention in a variety of models. We refer the inter-
ested reader to related work sections of [20] and [24] for

4A family of graphs is said to be minor-closed if it is closed

under vertex removals, edge removals and edge contractions.
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general references. We will focus on algorithms for low
arboricity graphs.

The starting point for such algorithms is the seminal
work of Chiba and Nishizeki, who give an O(n +
mαk−2) algorithm for enumerating k-cliques in a graph
of arboricity at most α [10]. The usual approach to
exploit the arboricity is to use degree or degeneracy
orientations, and this method has appeared in a number
of theoretical and practical results on triangle and
clique counting [12, 56, 7, 30, 39, 16]. Recent work
by Kopelowitz et al. shows that improving the O(mα)
bound for triangle counting is 3-SUM hard [41].

Our work follows a line of work on estimating sub-
graph counts using sublinear algorithms. The first re-
sults were average degree estimation results of Feige [29]
and Goldreich and Ron [34]. These ideas were extended
by Gonen et al. to estimate star counts [35]. This
was the first paper that looked at the problem of es-
timating triangles, albeit from a lower bound perspec-
tive. Eden et al. gave the first sublinear algorithm for
approximating the number of triangles. Their result
was generalized by the authors for k-clique counting (as
mentioned earlier) [24]. Recently, Assadi et al. [2] gave
an algorithm for approximately counting the number
of occurrences of any arbitrary graph H in an input
graph G, denoted by nH , in O(mρ(H)/nH) time, where
ρ(H) is the fractional edge cover of H.5 Their algorithm
works in a strictly more powerful model that also allows
for uniform-edge queries and was previously studied in
the context of sublinear algorithms by Aliakbarpour et
al. [1].

The relevance of arboricity for sublinear algorithms
was discovered in the context of estimating stars (or
degree moments) in previous work by the authors [22].
In that work, standard lower bounds for estimating
degree moments could be avoided for low arboricity
graphs, just as in Theorem 1.1. Recent work of Eden et
al. gives a sublinear (bicriteria) algorithm for property
testing arboricity [21].

On the data mining side, Dasgupta et al. and
Chierichetti et al. consider sublinear algorithms for
estimating the average degree, in weaker models than
the standard property testing model [17, 11]. These
results require extra assumptions on the graphs. Eden
et al. build on the ideas developed in work mentioned
earlier to get a practical algorithm for estimating the
degree distribution [19].

There is a rich literature on sublinear algorithms for

5The fractional edge cover of a graph H = (VH , EH) is a
mapping ψ : EH → [0, 1] such that for each vertex a ∈ VH ,
∑

e∈EH ,a∈e ψ(e) ≥ 1. The fractional edge-cover number ρ(H) of

H is the minimum value of
∑

e∈EH
ψ(e) among all fractional edge

covers ψ.

estimating other graph parameters such as the minimum
spanning tree, matchings, and vertex covers [9, 15, 14,
50, 61, 52, 50, 42, 61, 36, 51].

1.3 Organization of the paper. Our algorithm
and its analysis are quite involved. In Section 2 we
give a fairly elaborate (but informal) overview of our
algorithm and the ideas behind it. After introducing
some preliminaries and defining some central notions
(in Sections 3 and 4), we provide our algorithm and the
main procedures it uses (in Sections 5 and 6). The full
details of its analysis, as well as the proofs of the lower
bound are given in the full version of this paper [23],
which from here on we refer to as the full version.

2 Overview of the algorithm and lower bound

We start with describing the main ideas behind the
algorithm. As we explain below, our starting point
is similar to the one applied in [24] for approximately
counting the number of k-cliques in general graphs (and
that of [20], for k = 3). However, in order to exploit
the fact that the graphs we consider have bounded
arboricity, we depart quite early from the [24] algorithm,
and introduce a variety of new ideas. For the sake of

simplicity of the presentation, assume that α < n
1/k
k

and that ε is a constant, so that we aim for an upper
bound of roughly O(nαk−1/nk) (recall that m ≤ αn).
In what follows we refer to [24] as ERS.

2.1 Common starting point with ERS and the
arboricity challenge. Assume we uniquely and arbi-
trarily assign each k-clique to one of its vertices. For
a vertex v let w(v) denote the number of k-cliques as-
signed to it, where we refer to this value as the weight
of v. Consider sampling a set R of vertices uniformly
at random,6 and let w(R) =

∑
v∈R w(v). Clearly,

Ex[w(R)] = nk

n · |R|. However, w(R) might have a
large variance. For example, consider the case of k = 3
and the wheel graph, where it is possible that the cen-
tral vertex is assigned all the triangles. Hence, we need
an assignment rule that assigns almost all k-cliques, but
minimizes the number of k-cliques assigned to any ver-
tex. Furthermore, the rule should be efficiently com-
putable. That is, given a vertex v and a k-clique C,
it should be easy to verify whether C is assigned to v.
Assume for now that we have such an assignment rule,
and that w(R) is indeed close to its expected value.

The next step is to estimate w(R). Let ER denote
the set of edges incident to the vertices of R, and
assume that |ER| is close to its expected value m

n · |R|.

6The algorithm may actually obtain a multiset, but in this

exposition, we abuse terminology and call it a ‘set’.
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In ERS, w(R) is approximated by sampling uniform
edges in ER and extending them to k-cliques. Consider
first the (easy) case where all the vertices have degree
O(

√
m). In this case it is possible to extend an edge

(u, v) for u ∈ R to a (potential) k-clique by sampling
k − 2 neighbors of u, each with probability roughly
1/

√
m (and checking whether we obtained a clique).

The probability that this process yields a k-clique is

roughly w(R)

|ER|·√mk−2 ≈ nk

mk/2 . By repeating the above

process O(mk/2/nk) times,7 it is possible to can get an
estimate of w(R) and thus of nk (assuming an efficient
verification procedure for the assignment rule). For
the case when degrees are much larger than

√
m, ERS

gives a more complex procedure that extends edges to
(potential) k-cliques. In the end, each k-clique is still
sampled with probability roughly nk/m

k/2.
In our setting (where the arboricity is at most α)

the simple scenario discussed above of vertex degrees
bounded by O(

√
m) corresponds to the case that all

vertex degrees are O(α). In this special case we can
extend an edge to a (potential) k-clique in the same
manner as ERS, and get that the success probability
of sampling a k-clique is Ω

(
nk

mαk−2

)
. Unfortunately, it

is not clear how to adapt the ERS approach for the
unbounded-degrees case and obtain a dependence on α
instead of

√
m.

To give a better sense of the challenge, we focus
on approximating the number of triangles (i.e., n3) and
consider a graph G with m = Θ(n) and n3 = Θ(

√
n).

The upper bound of ERS allows for a “budget” of

O∗
(

n

n
1/3
3

+ m3/2

n3

)
= O∗(n) queries. That is, since

m = Θ(n), they can essentially “afford” to read the
entire graph. Now assume that we are also given
that α = O(1). Our upper bound only allows for

O∗
(
min

{
nα2

n3
, n

n
1/3
3

+ mα
n3

})
= O∗(

√
n) queries, that

is, a strictly sublinear number of queries. Recall that
bounded arboricity does not imply bounded vertex
degrees. Our main challenge is to exploit the bounded
arboricity so as to deal with vertices with high degrees
and with high variance in the number of triangles that
reside on different vertices (and edges).

Therefore, at this point, we depart from the ap-
proach of ERS.

7The observant reader may be worried that this requires know-

ing m and nk, where the former is not provided to the algorithm

and the latter is just what we want to estimate. However, con-
stant factor estimates of both suffice for our purposes. For m this

can be obtained using [22], and for nk this assumption can be

removed by performing a geometric search. For details see the

full version.

2.2 An iterative sampling process. The ERS al-
gorithm can be viewed as a three-step process. It first
samples vertices, then samples edges (incident to the
sampled vertices), and then (in one step) samples k-
cliques that are extensions of these edges. To get a
complexity depending on the arboricity, we devise an
iterative clique sampling process. In iteration t, we ob-
tain a sample of t-cliques, based on the sample of (t−1)-
cliques from the previous iteration.

It is crucial in our analysis to distinguish ordered
cliques from unordered cliques. An unordered t-clique
T is a set of t vertices T = {v1, . . . , vt} (such that
every two vertices are connected), while an ordered t-

clique is a tuple of t vertices ~T = (v1, . . . , vt) such that

{v1, . . . , vt} is a clique. We say that ~T = (v1, . . . , vt)
participates in a clique C, if {v1, . . . , vt} ⊆ C. We
also extend the (yet undefined) assignment rule to allow
assigning k-cliques to ordered t-cliques for any t ≤ k
(and not just to vertices, which is the special case of

t = 1). For an ordered t-clique ~T , let w(~T ) be the

number of k-cliques that are assigned to ~T , and for a
set of ordered t-cliques R, let w(R) =

∑
~T∈R w(~T ).

Our goal is to estimate w(V ) ≈ nk. We defer the
discussion of the assignment rule and for now focus on
the algorithm.

The algorithm starts by sampling a set of s1 ordered
1-cliques (vertices), denoted R1. Assume that w(R1) ≈
nk

n · s1. The algorithm next samples a set of s2 ordered
2-cliques (ordered edges), denoted R2, incident to the
vertices of R1. For t > 2, the tth iteration extends Rt

to Rt+1, as described next.

For an ordered t-clique ~T , let d(~T ) be the degree of

theminimum-degree vertex in ~T , and for a set of ordered
cliques R, let d(R) =

∑
~T∈R d(~T ). The sampling of the

set Rt+1 is done by repeating the following st+1 times:

sample a clique ~T in Rt with probability proportional
to d(~T )/d(Rt) and then select a uniform neighbor of

the least degree vertex in ~T . Hence, each (t + 1)-tuple
that is an extension of an ordered t-clique in Rt is

sampled with probability d(~T )
d(Rt)

· 1

d(~T )
= 1

d(Rt)
. For each

sampled (t + 1)-tuple, the algorithm checks whether it
is a (t + 1)-clique, and if so, adds it to Rt+1. Suppose
that the weight function (defined by the assignment
rule) has the following property. The weight w(Rt) is
the sum of the weights taken over all ordered (t + 1)-
cliques that are extensions of the ordered t-cliques inRt.
We can conclude that the expected value of w(Rt+1) is
w(Rt)
d(Rt)

· st+1.

We need to get good upper bounds for st+1, while
ensuring that w(Rt+1) is concentrated around its mean.
Note that the probability of getting a (t + 1)-clique is
inversely proportional to d(Rt). Thus, we need good
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upper bounds on this quantity, to upper bound st+1.
This is where the arboricity enters the picture. Let
Ct denote the set of t-cliques in the graph. We give
a simple argument proving that d(Ct) =

∑
~T∈Ct

d(~T ) =

O(mαt−1). (Note that the case t = 2 is precisely the
Chiba and Nishizeki bound

∑
(u,v)∈E min{d(u), d(v)} =

O(mα) [10].) We then show that d(Rt) is bounded as a
function of d(Ct).

2.3 Desired properties of the assignment rule.
Recall that we need to ensure that, with high probabil-
ity, w(R1) is close to its expected value, which should
be close to nk

n · s1, and that for every t ≥ 1, w(Rt+1) is

close to w(Rt)
d(Rt)

· st+1. In addition, we need to efficiently

verify the assignment rule. We achieve this by defining
an assignment rule that has the following properties.

1. w(V ) ≈ nk. This ensures that the expected value
of w(R1) is approximately nk

n · s1.
2. For every t, the sum of the weights taken over all

ordered (t+1)-cliques that are extensions of the ordered
t-cliques inRt equals w(Rt). This ensures that for every

t, Ex[w(Rt+1)] =
w(Rt)
d(Rt)

· st+1.

3. For every ordered t-clique ~T , w(~T ) is not too
large. This ensures that with high probability w(Rt+1)
is close to its expected value for all t, for a sufficiently
large sample size st+1 (which depends on this upper

bound on w(~T ) as well as on d(Rt)).

4. Given a k-clique C and an ordered t-clique ~T =
(v1, . . . , vt) such that {v1, . . . , vt} ⊆ C, we can efficiently

determine if C is assigned to ~T . This ensures that when
we get the final set Rk of ordered k-cliques, we can
compute its weight (and deduce an estimate of nk).

We introduce key notions in the definition of such
an assignment rule.

2.4 Sociable cliques and the assignment rule.
For an ordered t-clique ~T , let ck(~T ) denote the number

of k-cliques containing ~T . An ordered t-clique ~T is
called sociable if ck(~T ) is above a threshold τt ≈ αt−1.
Otherwise, the clique is called non-sociable. For a
k-clique C = {v1, . . . , vk}, let O(C) be the set of
all ordered k-cliques corresponding to the k! tuples
inducing C. Let O′(C) be the subset of O(C) that
contains ordered k-cliques in O(C) such that all prefixes
are non-sociable. Consider the assignment rule that
assigns C to the first (in lexicographic order) ~C ∈ O′(C)
and to each of its prefixes.

In a central lemma we prove that the number of
k-cliques that are not assigned by this assignment rule
to any ordered k-clique (and its prefixes) is relatively
small. The proof relies on the sociability thresholds {τt}

and the fact that the graph has arboricity at most α.
We note that ERS also defined the notion of sociable
vertices (as vertices that participate in too many k-
cliques). However, their argument for bounding the
number of unassigned k-cliques was simpler, as they did
not define and account for sociable cliques for t > 1.

The aforementioned assignment rule addresses
Properties 1 to 3. We are left with Property 4 (and
how it fits in the big picture).

2.5 Verifying an assignment and costly cliques.
Recall that in the last iteration of the algorithm, it has
a set Rk of ordered k-cliques, and it needs to compute
w(Rk) (which can be translated to an estimate of nk).

Namely, for each ordered k-clique ~C = (v1, . . . , vk)
in Rk, the algorithm needs to verify whether the
corresponding k-clique C = {v1, . . . , vk} is assigned to
~C. This requires to verify whether ~C, and each of
its prefixes, is non-sociable. Furthermore, it requires
verifying that ~C is the first such ordered k-clique (in
O(C)).

For an ordered t-clique ~T , consider the subgraphG~T
induced by the set of vertices that neighbor every vertex
in ~T . Observe that ck(~T ) equals the number of (k − t)-

cliques in G~T . Therefore, deciding whether ~T is sociable
amounts to deciding whether the number of (k − t)-
cliques in the subgraph G~T is greater than τt. Indeed
this is similar to our original problem of estimating the
number of (k − t)-cliques in a graph, except that it
is applied to a subgraph G~T of our original graph G.
Unfortunately, we do not have direct query access to
such subgraphs. To illustrate this, consider the case of
t = 1 so that ~T consists of single vertex v. While we can
sample uniform vertices in the subgraph G(v), we cannot
directly perform neighbor queries (without incurring a
possibly large cost when simulating queries to G(v) by
performing queries to G).

However, we show that we can still follow the
high-level structure of our iterative sampling algorithm
(though there are a few obstacles). Specifically, we

initialize Rt = {~T}, and for each j = t, . . . , k − 1,
we sample a set of ordered (j + 1)-cliques Rj+1 given
a set of ordered j-cliques Rj , exactly as described in
Section 2.2. The first difficulty that we encounter is
the following. The success probability of sampling an
ordered (j + 1)-clique that extends an ordered j-clique
in Rj is inversely proportional to d(Rj). Unfortunately,
here we cannot argue that with high probability d(Rj)
can be upper bounded as a function of d(Cj) (which
is O(mαj−1)). The reason is that while the algorithm
described in Section 2.2 starts with a uniform sample
of vertices R1 (that the following samples Rj build on),

1471

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

0
 t

o
 2

4
.6

.7
5
.1

2
9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



here we start with Rt = {~T} for an arbitrary t-clique
~T .

We overcome this obstacle by defining the notion
of costly cliques. We say that an ordered t-clique ~T
is costly if for some j ≥ t, d(Cj(~T )) is too large,

where Cj(~T ) is the set of j-cliques that ~T participates
in. For such ordered t-cliques, we cannot efficiently
verify whether they are sociable. Thus, we modify our
assignment rule so that costly cliques are not assigned
any k-clique (even if they are non-sociable). We prove
that the additional loss in unassigned k-cliques is small
and that we can efficiently determine if an ordered t-
clique is costly. So we start with Rt = {~T}, apply the
iterative process, and obtain a set of ordered k-cliques
Rk (that are all extensions of ~T ). To determine if ~T is

sociable, we need to estimate ck(~T ), i.e., the number of
(k − t) cliques in G~T . Luckily, it suffices to make this
decision approximately. For the analysis to go through,
it suffices to distinguish between the case that ck(~T ) is
“too large”, and the case that it is “sufficiently small”.
Therefore, given Rk, the final decision (regarding the

sociability of ~T ) can be made just based on |Rk|.

2.6 Summary of our main new ideas and where
arboricity comes into play. The following are the
main differences and new ideas as compared to ERS,
with an emphasis on the role of bounded arboricity.

1. We introduce an iterative sampling process that,
starting from a uniform sample R1 of vertices, creates
intermediate samples Rt of ordered t-cliques, until it
obtains a sample of ordered k-cliques. Arboricity comes
into play here since the probability of obtaining an
ordered (t + 1)-clique that can be added to Rt+1, is
inversely proportional to 1/d(Rt), which in turn can be
bounded as a function of α (and m).

2. We introduce an assignment rule and corre-
sponding weight function w that ensures two properties.
(1) Almost every k-clique is assigned (to some ordered
k-clique and all its prefixes), and (2) no ordered clique
is assigned too many k-cliques. The former implies that
w(V ) ≈ nk. The latter implies that, in the iterative
sampling process, each sample of larger ordered cliques
“maintains the weight” (up to an appropriate normal-
ization) of the previous sample.
The arboricity α determines the sociability thresholds
{τt} (above which an ordered clique is not assigned
any k-clique). These thresholds are carefully chosen
to ensure that in graphs with arboricity at most α,
the number of unassigned k-cliques is sufficiently small.
These parameters directly affect the time complexity of
the algorithm.

3. We show how the assignment rule can be ver-
ified. This translates to determining whether certain

ordered cliques are sociable. A key notion is that of
costly cliques, whose sociability cannot be determined
efficiently. Arboricity also plays a role in their definition
and in the proof that the additional loss incurred by not
assigning k-cliques to costly ordered cliques is small.

2.7 The lower bound. Both terms in the lower
bound are direct generalizations of the lower bound
for approximately counting k-cliques in general graphs,
first proven in [24] and later simplified by Eden and
Rosenbaum [25].

For the case that nk ≤
(
α
k

)
, the proof of the

Ω

(
n

k·n1/k
k

)
term has already appeared in the works

mentioned above. For the case that nk >
(
α
k

)
, the

proof is based on a simple hitting argument as follows.
We start with a fixed graph G′ with n vertices, m
edges, arboricity α, and no k-cliques. Now, let G1

consist of r = nk/
(
α
k

)
disjoint α-cliques, with a disjoint

copy of G′. Let G2 consist of rα isolated vertices
and a disjoint copy of G′. Hence, in both graphs
G1 and G2 there are Θ(n) vertices, Θ(m) edges, and
arboricity α. Furthermore, in both graphs there are no
edges between the different subgraphs, and we consider
a random labeling of the vertex names. Clearly, an
algorithm cannot distinguish between the two graphs,
unless it hits one of the cliques, which happens with

probability r·α
n = Θ

(
kk·nk

n·αk−1

)
. Therefore, any algorithm

for estimating the number of k-cliques must perform

Ω
(

nαk−1

kk·nk

)
queries in expectation.

The proof of the Ω
(
min{m(α/k)k−2

nk
,m}

)
term is

more involved, and is based on a reduction from a
generalization of the set-disjointness communication
complexity problem.

3 Preliminaries

For an integer j, the set {1, . . . , j} is denoted by [j].
For a pair of integers i ≤ j, the set of integers {i, . . . , j}
is denoted by [i, j]. For a multiset S, we use |S| to
denote the sum of multiplicities of the items in S. Our
algorithm gets parameters k and ε, where we assume
that ε < 1/2k2 (or else we set ε = 1/2k2).

Let G = (V,E) be a graph with n vertices, m
edges, and arboricity α(G). As noted in Section 2, we
distinguish between a t-clique, which is a set of t vertices
T = {v1, . . . , vt} (with an edge between every pair of
vertices in the set), and an ordered t-clique, which is a

t-tuple of t distinct vertices ~T = (v1, . . . , vt) such that

{v1, . . . , vt} is a clique. For an ordered t-clique ~T =

(v1, . . . , vt), we use U(~T ) to denote the corresponding
unordered t-clique {v1, . . . , vt}. For cliques (ordered
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cliques) of size 1, that is, vertices, we may use v instead
of {v} (respectively, (v)), and similarly for cliques of size
2 (edges). We let Ct(G) denote the set of t-cliques in G,
and nt(G) = |Ct(G)|. For the set of ordered t-cliques in
G we use Ot(G). When G is clear from the context, we
use the shorthand Ct, nt and Ot, respectively.

Definition 3.1. (Clique’s least degree vertex)
For a clique (or ordered clique) C we let Γ(C) denote
the set of neighbors of C’s minimal-degree vertex
(breaking ties by ids) and let d(C) = |Γ(C)|. We refer
to d(C) as the degree of the (ordered) clique and to
Γ(C) as its set of neighbors. For a set (or multiset)
of cliques (or ordered cliques) R, we use the notation
d(R) for

∑
C∈R d(C).

We stress that Γ(C) (and respectively, d(C)) does not
refer to the union of neighbors of vertices in C, but only
to the neighbor of a single designated vertex in C.

The proofs of the next two claims appear in the full
version.

Claim 3.1. For every t, d(Ct(G)) ≤ 2m · α(G)t−1.

Claim 3.2. For every t ≥ 2, nt(G) ≤ 2α(G)
t ·nt−1(G) .

As a corollary of Claim 3.2, we obtain.

Corollary 3.1. For every 1 ≤ t < k,

nk(G) ≤ t!

k!
· nt(G) · (2α(G))k−t .

4 Weight functions and assignments

As explained in the overview of our algorithm, a central
component in our approach is a weight function defined
over ordered cliques. We shall be interested in a weight
function that is legal in the following sense.

Definition 4.1. (A legal weight function) A

weight function w :
⋃k

t=1 Ot → N is legal if it satisfies
the following.
1. For every ordered k-clique ~C, w( ~C) ∈ {0, 1}, and

for every unordered k-clique C, there is at most
one ordered k-clique ~C such that C = U( ~C) and

w( ~C) = 1.
2. For every t ∈ [k − 1] and for every ordered t-clique

~T , w(~T ) =
∑

~T ′∈Ot+1(~T ) w(
~T ′).

For a multiset of ordered cliques R, we let w(R) =∑
~T∈R w(~T ).

By the above definition,

Fact 4.1. Let w be a legal weight function. Then
w(V ) ≤ nk.

We next show how to define a weight function based
on a subset A =

⋃k
t=1 At such that At ⊆ Ot, which we

refer to as a subset of active ordered cliques. Referring
to the notions introduced informally in Section 2, the
intention is that active ordered cliques will be non-
sociable and non-costly where these notions are formally
defined in the in the full version. The weight function
is closely linked to the notion of assigning k-cliques to
ordered cliques (as becomes clear in Definition 4.3). For
now our goal is to define such a weight function that
is legal, and such that we can easily verify (based on
A) whether an ordered k-clique has weight 1 or 0. We
would like to devise a weight function w such that w(V )
is not much smaller than nk, and that the weight of
very ordered clique is appropriately bounded. We later
provide sufficient conditions on A, which ensure that
these properties hold.

In what follows, for a set R of ordered cliques (in

particular of the same size), we say that ~T ∈ R is first
in R if it is lexicographically first. Also, for an ordered
t-clique ~T and j ≤ t, we use ~T≤j to denote the ordered

j-clique formed by the first j elements in ~T .
Since we shall be interested in active ordered cliques

such that all of their prefixes are also active, it will be
useful to define the notion of fully active cliques.

Definition 4.2. (Fully-active cliques) Let A be a

subset of ordered cliques. An ordered t-clique ~T is fully
active with respect to A, if all of its prefixes belong to
A. That is, ~T≤j ∈ A for every j ∈ [t]. We denote the
subset of t-cliques that are fully active with respect to A
by FA

t .

We are now ready to define our assignment rule.
Recall that for an ordered k-clique ~C = (v1, . . . , vk),

we use U( ~C) = {v1, . . . , vk} to denote its corresponding
unordered clique. Hence, for an unordered k-clique C,
U−1(C) is the set of k! ordered k-cliques ~C ′ such that

U( ~C ′) = C.

Definition 4.3. (Assignment and weight) Let A
be a subset of ordered cliques. For each k-clique C, if
U−1(C) ∩ FA

k 6= ∅, then C is assigned (with respect to

A) to the first ordered k-clique ~C ∈ U−1(C) ∩ FA
k , and

to each ordered t-clique ~C≤t for t ∈ [k − 1]. Otherwise
(if U−1(C) ∩ FA

k = ∅), C is unassigned. That is, we

assign the k-clique C to the first ordered k-clique ~C in
U(C) that is fully active and to all of its prefixes, if such

an ordered clique ~C exists. Otherwise we do not assign
C to any ordered clique.

For each ordered t-clique ~T , we let wA(~T ) denote

the number of k-cliques that are assigned to ~T , and we
refer to wA(~T ) as the weight of ~T (with respect to A).
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Observe that by Definition 4.3, an ordered t-clique
~T is assigned some k-clique C only if it is the t-prefix of
some fully active (with respect to A) ordered k-clique ~C.

This implies that ~T is active, and hence, only ordered
cliques in A can have non-zero weight.

The next claim follows from Definition 4.3.

Claim 4.1. For any subset A of ordered cliques, wA(·)
is a legal weight function.

The following definition encapsulates what we re-
quire from the resulting weight function wA.

Definition 4.4. (Good active subset) For an ap-
proximation parameter ε and a vector of weight thresh-
olds ~τ = (τ1, . . . , τk), we say that a subset A of or-
dered cliques is (ε, ~τ)-good if the following two condi-
tions hold:

1. For every t ∈ [k] and for every ordered t-clique
~T , wA(~T ) ≤ τt.

2. wA(V ) ≥ (1− ε/2)nk.
If only the first condition holds, then we say that A is
~τ -bounded.

As we shall discuss in more detail subsequently, we
obtain the first item in Definition 4.4 by ensuring that
A includes only ordered cliques that do not participate
in too many k-cliques.

5 An oracle based algorithm

In order to make the presentation more modular, we
first present an oracle-based algorithm. That is, we
assume the algorithm,Approx-Cliques, is given access
to an oracle QA for a subset of active ordered cliques
A: for any given ordered clique ~T , the oracle QA

returns whether ~T ∈ A. The algorithm also receives
an approximation parameter ε, a confidence parameter
δ, a “guess estimate” ñk of nk, an estimate m̃ of m,
and a vector of weight-thresholds ~τ . Our main claim
will roughly be that if A is (ε, ~τ)-good (as defined
in Definition 4.4), m̃ ≥ m/2 and ñk ≤ nk, then
with probability at least 1 − δ the algorithm outputs a
(1± ε) approximation of nk, by approximating wA(V ).
A constant-factor estimate m̃ of m can be obtained
by calling the moments-estimation algorithm of [22],
which is designed to work for bounded-arboricity graphs
(applying it simply to the first moment). We can
alleviate the need for the parameter ñk, by relying on
the search algorithm of [24] .

The algorithm Approx-Cliques starts by selecting
a uniform sample of vertices (1-cliques). It then contin-
ues iteratively, where at the start of each iteration it has
a sample of ordered t-cliques Rt. It sends this sample
to the procedure Sample-a-Set, which returns a sam-
ple of ordered (t+1)-cliques Rt+1. The ordered cliques

in Rt+1 are extensions of ordered cliques in Rt. Once
the algorithm reaches t = k, so that it has a sample of
ordered k-cliques, it calls the procedure Is-Assigned
on each ordered k-clique ~C in Rk to check whether it is
assigned the unordered clique U( ~C) (i.e., wA( ~C) = 1).
Finally it returns an appropriately normalized version
of the total weight of Rk.

For the sake of the exposition, here we provide a
slightly simplified version of the algorithm. In partic-
ular, we give approximate settings of the variables in
the algorithm, and use the notation h for these approx-
imate settings. We also removed two steps in which the
algorithm aborts, which are used in order to bound the
complexity of the algorithm. For full details (as well as
a complete analysis) see full version.

The procedure Sample-a-Set (invoked in Step 3b
of Approx-Cliques), is presented next. Given a
multiset Rt of ordered t-cliques, consider all (t + 1)-

tuples that each corresponds to an ordered t-clique ~T
in Rt, and a neighbor v of ~T . (For the definition of

the neighbors of an ordered clique ~T and its degree
d(~T ) refer to Definition 3.1.) Sample-a-Set samples
uniformly from these tuples, and includes in Rt+1

those (t + 1)-tuples that are ordered (t + 1)-cliques.
Constructing a data structures that supports sampling
each ~T ∈ Rt with probability d(~T )/d(Rt) when given

all degrees d(~T ) and d(Rt) can be implemented in linear
time in |Rt| (see e.g., [59, 60, 43] on generating random
variables according to a specified discrete distribution).

For a t-clique T = {v1, . . . , vt}, and j ≥ t, we let
Cj(T ) denote the set of j-cliques that T participates in.
That is, the set of j-cliques T ′ such that T ⊆ T ′. For
an ordered t-clique ~T we use Cj(~T ) as a shorthand for

Cj(U(~T )), and also say that ~T participates in each ~T ′ ∈
Cj(~T ). We let Oj(~T ) denote the set of ordered j-cliques

that are extensions of ~T . For a multiset of (ordered)
t-cliques R, we use Cj(R) to denote the union of Cj(T )
taken over all ~T ∈ R, where here in “union” we mean
with multiplicity,8 and Oj(R) is defined analogously.
We extend the definitions of Cj and Oj to t-tuples such

that for a t-tuple ~T that does not correspond to a t-
clique, Cj(~T ) and Oj(~T ) are mapped to the empty set.

Finally, for an ordered t-clique ~T = (v1, . . . , vt) and a

vertex u, we use (~T , u) as a shorthand for the (t + 1)-
tuple (v1, . . . , vt, u).

It can be proved for an appropriate setting of the
parameter st+1, the set Rt+1 returned by the procedure
is “typical” with respect to the set Rt. Essentially we
prove that with high probability, w(Rt+1) is close to its

8The formal term should be “sum”, but since “sum” is usually

used in the context of numbers, we prefer to use “union”.
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Approx-Cliques(n, k, α, ε, δ, m̃, ñk, ~τ ,QA)

1. Define R0 = V , d(R0) = n and set w̃0 h ñk.
2. Sample s1 h

nτ1
ñk

vertices u.a.r. and let R1 be the chosen multiset.
3. For t = 1 to k − 1 do:

(a) Compute d(Rt) and set w̃t h
w̃t−1

d(Rt−1)
· st and st+1 h

d(Rt)·τt+1

w̃t
.

(b) Invoke Sample-a-Set(t,Rt, st+1) and let Rt+1 be the returned multiset.

4. Let n̂k = n·d(R1)·...·d(Rk−1)
s1·...··sk ·∑~C∈Rk

Is-Assigned( ~C,QA).
5. Return n̂k.

Sample-a-Set(t,Rt, st+1)

1. Compute d(Rt) and set up a data structure to sample each ~T ∈ Rt with probability d(~T )/d(Rt).
2. Initialize Rt+1 = ∅.
3. For ℓ = 1 to st+1:

(a) Invoke the data structure to generate an ordered clique ~Tℓ.

(b) Query degrees of vertices in ~Tℓ, and find a minimum degree vertex u ∈ ~Tℓ.
(c) Sample a random neighbor vℓ of u.

(d) If (~Tℓ, vℓ) is an ordered (t+ 1)-clique, add it to Rt+1.
4. Return Rt+1.

expected value, w(Rt)
d(Rt)

·st+1, and that d(Cj(Rt+1)) is not

much larger than its expected value
d(Cj(Rt))

d(Rt)
· st+1.

The procedure Is-Assigned (invoked in Step 4 of
Approx-Cliques) decides whether a given ordered k-

clique ~C is assigned U( ~C), i.e., whether wA( ~C) = 1.
This is done following Definition 4.3, given access to an
oracle for A. In Section 6 we replace the oracle by an
explicitly defined procedure.

As stated at the start of this section, we show
that if QA is an oracle for an (ε, ~τ)-good subset A,
m̃ ≥ m/2 and ñk ≤ nk, then with probability at least
1 − δ, Approx-Cliques returns an estimate n̂k such
that n̂k ∈ (1 ± ε)nk. The precise statement regarding
the correctness and complexity of Approx-Cliques as
well as its proof, are provided in the full version.

6 Implementing an oracle for good subset A
In this section we describe a (randomized) procedure
named Is-Active, that implements an oracle for a
subset A, where with high probability, A is (ε, ~τ)-good
for an appropriate setting of ~τ . For an ordered t-clique
~T , recall that ck(~T ) denotes the number of k-cliques

that ~T participates in (that is, ck(~T ) = |Ck(~T )|). The

procedure aims at determining whether ck(~T ) is larger
than τt, in which case it is not included in A. This
ensures that the first item in Definition 4.4 holds, since
wA(~T ) ≤ ck(~T ) ≤ τt. On the other hand, the setting
of ~τ is such that despite not including in A all ordered
cliques ~T for which ck(~T ) is above the allowed threshold,
we can still prove that the second item in Definition 4.4

holds as well.
In order to give the idea behind the procedure

Is-Active, consider the special case that t = 1 and
T = {v} for some vertex v. Observe that ck(v) is the
number of k-cliques in the subgraph induced by v and its
neighbors. Roughly speaking, for i = 1, the procedure
Is-Active works similarly to the algorithm Approx-
Cliques, subject to setting R1 = {v}. Namely, starting
from t = 1, and using the procedure Sample-a-Set,
it iteratively selects a sample Rt+1 of ordered (t + 1)-
cliques, given a sample Rt of ordered t-cliques. Once
it obtains Rk it uses |Rk| to decide whether ck(v) is
too large (and hence should not be included in A). As
opposed to Approx-Cliques, here we do not ask for
a precise estimate of ck(v), and hence this decision is
simpler. In addition, the invariant that we would like
to maintain is that the average number of k-cliques
that ordered cliques in Rt+1 participate in, does not
deviate by much from the average number for Rt. The
procedure generalizes to i > 1 by setting Ri =

{
~I
}
and

starting the sampling process with t = i.
Observe that the procedure Is-Active may exit (in

Step 2c) before reaching t = k − 1 if st+1 is above a
certain threshold. This early exit (with an output of

Non-Active) addresses the case that ~I is “costly” (this
was informally defined Section 2.5).

As in the case of the algorithm Approx-Cliques,
here we give a slightly simplified version of Is-Active.

By replacing the calls to an oracle QA in the
algorithm Approx-Cliques with calls to Is-Active,
we obtain an algorithm that with high probability
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Is-Assigned( ~C,QA)

1. Let C = U( ~C).

2. For each ~C ′ ∈ U−1(C), check whether ~C ′ is fully active with respect to A, i.e., whether ~C ∈ FA
k , by

calling QA on every prefix ~C ′
≤t for t ∈ [k − 1].

3. If ~C ∈ FA
k and it is the first ordered k-clique in FA

k , then return 1, otherwise return 0.

Is-Active(i, ~I, k, α, ε, δ, ñk, m̃, ~τ)

1. Let Ri =
{
~I
}
and w̃i h τi.

2. For t = i to k − 1 do:
(a) Compute d(Rt).

(b) For t > i set w̃t h
w̃t−1

d(Rt−1)
· st and st+1 h

d(Rt)·τt+1

w̃t
.

(c) If st+1 is larger than m̃αt−1·τt+1

ñk
, then return Non-Active.

(d) Invoke Sample-a-Set(t,Rt, st+1) and let Rt+1 be the returned multiset.

3. Set ĉk(~I) :=
d(Ri)·...·d(Rk−1)

si+1·...·sk · |Rk|.
4. If ĉk(~I) ≤ τi/4 then return Non-Active. Otherwise, return Active.

computes a (1 ± ε)-estimate of nk (conditioned on
m̃ ≥ m/2 and ñk < nk, where both assumptions can
be removed). For full details, see the full version.
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